

Emergency Cardiology Symposium 2025
Rohit Menon, M.D.



1



# Recognizing and Managing Cardiogenic Shock is Easy

2

| Pulmonary artery (balloon/PAWP)            |                           |  |
|--------------------------------------------|---------------------------|--|
| THERMISTOR                                 |                           |  |
| BLUE<br>Right atrium (<br>WHITE            |                           |  |
| Cardiac Index (Thermodilution)             | CI < 2 L/m/m <sup>2</sup> |  |
| Cardiac Index (Fick)                       | CI < 2 L/m/m <sup>2</sup> |  |
| Mixed Venous Saturation (MvO2)             | MvO2 <60%                 |  |
| Cardiac Power (CPO)                        | CPO < 0.6 W               |  |
| Pulmonary Artery Pulsatility Index (PAPi)  | PAPi < 0.9                |  |
| Central Venous Pressure (CVP)              | CVP >12 mmHg              |  |
| Pulmonary Artery Occlusion Pressure (PAOP) | PAOP > 15 mmHg            |  |

Recognizing and Managing Cardiogenic Shock is **NOT** Easy

5

# Recognizing and Managing Cardiogenic Shock is **NOT** Easy

Especially in the Emergency Department

# **Agenda**

- 1 Errors and
  Assumptions of
  Recognition
- 2 Errors and
  Assumptions of
  Management

7

# Agenda Errors and Assumptions of Recognition

- 1 Assumptions re: Vitals and Physical Exam
- 2 Misinterpreting Labs
- 3 Fatal assumptions re: Etiology

# Agenda **Errors and Assumptions of Management Consider RV Failure** 2 3

Agenda **Errors and Assumptions of Management Consider RV Failure Avoid** beta blockers and calcium 2 channel blockers 3

# Agenda Errors and Assumptions of Management

- 1 Consider RV Failure
- 2 Avoid beta blockers and calcium channel blockers
- 3 Do not be afraid of Inotropes
- 4
- 5

11

# Agenda Errors and Assumptions of Management

- 1 Consider RV Failure
- 2 Avoid beta blockers and calcium channel blockers
- 3 Do not be afraid of Inotropes
- 4 Avoid volume overload
- 5

# Agenda Errors and Assumptions of Management

- 1 Consider RV Failure
- Avoid beta blockers and calcium channel blockers
- 3 Do not be afraid of Inotropes
- 4 Avoid volume overload
- 5 Know when to transfer / activate cath lab

13

# Agenda <u>Management</u>

- 1 A: Airway
- 2
- 3
- 4
- 5

# Agenda Management 1 A: Airway 2 E: Etiology treatment 3 4 5

Agenda

Management

A: Airway

E: Etiology treatment

I: Inotropy (and vasoactives)

4

5

16

# Agenda Management A: Airway E: Etiology treatment I: Inotropy (and vasoactives) O: Offloading the heart

17

# Agenda Management 1 A: Airway 2 E: Etiology treatment 3 I: Inotropy (and vasoactives) 4 O: Offloading the heart 5 U: Upgrade Support



19



# **Definition of Cardiogenic Shock?**

- End Organ Injury
- Systemic Hypotension
- Reduced Cardiac Output



# **Definition of Cardiogenic Shock?**

- End Organ Injury
- Systemic Hypotension
- Reduced Cardiac Output

21



# **Definition of Cardiogenic Shock**

- End Organ Injury
- Insufficient Cardiac Output



# **Definition of Cardiogenic Shock**

CO = Stroke Volume x Heart Rate

23



# **Definition of Cardiogenic Shock**

2025 ACC Definition (March 2025)
A cardiac disorder that results in both clinical and biochemical evidence of sustained tissue hypoperfusion irrespective of underlying blood pressure







# **Traditional Patient Population for CS**

- Age > 75
- Asian American / Pacific Islander
- CAD, HTN, HLD, Obesity
- Recent MI

27



# **Traditional Physical Exam**

- Congestion
- Impaired Perfusion



# **Traditional Physical Exam**

- Congestion
  - JVD
  - Crackles
  - Peripheral Edema
  - Hepatomegaly

29



# **Traditional Physical Exam**

- Impaired Perfusion
  - Mottled Skin
  - Cold Extremities
  - Delayed Cap Refill
  - Narrow Pulse Pressure
  - Tachycardia
  - Altered Mental Status
  - Oliguria



31



# **Exceptions to the Rule**

- Euvolemic Cardiogenic Shock
- Normotensive Cardiogenic Shock
- RV Shock
- High Output Heart Failure





# **Exceptions to the Rule: Euvolemic CS**

- Chronic heart failure patients hide fluid
- Chronic heart failure patients may be diuresed
- Clues: Symptoms, Narrow pulse pressure
- Check a lactate!



# **Exceptions to the Rule: Normotensive CS**

- Rare (~5% of patients in shock trials)
- Most commonly in cases of acute MI
- > 30 mmHg lower than usual BP

35



# **Exceptions to the Rule: Normotensive CS**

- Can occur in SCAI B patients with isolated tachycardia
- Heart failure patients with missed antihypertensive medications



# **Exceptions to the Rule: RV Shock**

- JVD, Ascites, Hepatomegaly
- May not have crackles, exertional dyspnea, lower extremity edema
- Usually hypotensive, clammy, cool extremities

37



# Exceptions to the Rule: High Output Heart Failure

- Hyperthyroid
- Sepsis
- Severe malnutrition (Beriberi)



# Exceptions to the Rule: High Output Heart Failure

- Hyperthyroid
- Sepsis
- Severe malnutrition (Beriberi)
- Pregnancy
  - aside from peripartum cardiomyopathy
- ESRD with AV Fistula
  - Nicoladoni-Branham Sign! (Ehtisham, 2017)

30

ERRORS AND ASSUMPTIONS OF RECOGNITION

Lesson: Do not exclude CS because patients are not "cold and wet"



41

# Lab Testing in Cardiogenic Shock CBC Chemistry LIFTs BNP Troponin Lactate Sv02%



- No perfect lab test
- Labs can easily be misinterpreted as sepsis or other forms of shock

43

# **Lab Testing in Cardiogenic Shock**

- CBC
  - WBC can be a marker of systemic inflammation and stress



- CBC
  - Total Leukocyte Count in CICU Patients (Smith, 2024)
    - Retrospective cohort study n = ~12,000
    - Subgroup Analysis of CS Patients (~1400)
      - n = 20 WBC < 4
      - n = 524 WBC 4-11
      - n = 701 WBC 11-22
      - n = 150 WBC > 22

45

## **Lab Testing in Cardiogenic Shock**

- CBC
  - Total Leukocyte Count in CICU Patients (Smith, 2024)
    - Retrospective cohort study n = ~12,000
    - Subgroup Analysis of CS Patients (~1400)
      - n = 20 WBC < 4
      - n = 524 WBC 4-11
      - n = 701 WBC 11-22
      - n = 150 WBC > 22

High WBC does not rule out CS



- Chemistry
  - Creatinine should be used as a trend
  - High Cr does not mean prerenal!
  - Can be skewed by patients with CKD

Cr ≥2× upper limit of normal

47



# **Lab Testing in Cardiogenic Shock**

- LFTs
  - Jänti et al. 2017
    - n = 178
    - ALT was abnormal in 58% of patients



- LFTs
  - Jänti et al. 2017
    - n = 178
    - ALT was abnormal in 58% of patients
    - Kapur et al. 2022 retrospective analysis
      - n= 3455 hospital admissions with CS
      - SCAI B stratified as ALT 200-500
      - SCAI C stratified as ALT > 500

49

## **Lab Testing in Cardiogenic Shock**

- LFTs
  - Jänti et al. 2017
    - n = 178
    - ALT was abnormal in 58% of patients

ALT >200 U/L or >3× upper limit of normal



- BNP
  - Very little correlation
  - Brett, 2004
    - BNP level <350 pg/mL NPV 95%</li>
    - Unclear what average BMI was

51



# **Lab Testing in Cardiogenic Shock**

- Troponin
  - Can be present as demand ischemia
  - Can point towards AMI or right heart strain



- Lactate
  - Associated with mortality increase

53



# **Lab Testing in Cardiogenic Shock**

- Lactate
  - Associated with mortality increase
    - Kapur et al 2022 retrospective analysis
      - n= 3455 hospital admissions with CS
      - SCAI B stratified as Lactate 2-5
      - SCAI C stratified as Lactate 5-10



- Lactate
  - Associated with mortality increase

Lactic acid >2 mmol/L (pH < 7.2 without a known cause)

55



# **Lab Testing in Cardiogenic Shock**

- SvO2 (Mixed venous oxygen saturation)
  - Controversial
  - Normal 70-80%
  - < 65% supposed to imply impaired tissue oxygenation



- RIJ CVC 20 cm terminating in the SVC
  - ScvO2 not a true mixed gas, not as accurate
- Theory: cvO2 > 80% associated Sepsis

57

# Re: cvO2% (EMCrit, Dr. Farkas)

| Numerous factors affect the cvO2% |                                                                                                   |                                                                                                       |
|-----------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                   | Increase cvO2%                                                                                    | Decrease cvO2%                                                                                        |
| Cardiac Output                    | High cardiac output                                                                               | Low cardiac output                                                                                    |
| Hemoglobin                        | Hemoconcentration                                                                                 | Anemia                                                                                                |
| Oxygenation                       | Hyperoxia                                                                                         | Hypoxemia                                                                                             |
| Mental status                     | Sedation, analgesia                                                                               | Stress, anxiety, pain                                                                                 |
| Temperature                       | Hypothermia                                                                                       | Hyperthermia                                                                                          |
| Muscular activity                 | Paralysis                                                                                         | Shivering, agitation, elevated work of breathing                                                      |
| Microvascular & cellular behavior | Cells fail to use oxygen (e.g.<br>mitochondrial dysfunction in<br>sepsis or ischemia-reperfusion) | Effective microvascular matching of flow with oxygen demand, effective cellular utilization of oxygen |







- Anecdotally
  - Very low saturation suggest CS
  - Best use: trend in response to interventions

"A central venous catheter can be helpful to measure central venous pressure and obtain a central venous oxygen saturation."

61

ERRORS AND ASSUMPTIONS OF RECOGNITION

Lessons: Do not assume AKI means dry. Check the heart before bolusing fluid.

ERRORS AND ASSUMPTIONS OF RECOGNITION

# Lessons: Interpret labs in the clinical context of the patient and to trend during interventions

63

Fatal
Assumption: CS
is due to new or
chronic heart
failure



# **Causes of Acute Cardiogenic Shock**

- Conduction System
- Ventricles
- Pericardium
- Valves

65



# **Causes of Acute Cardiogenic Shock**

- Conduction
  - Ventricular Arrhythmia
  - Unstable Supraventricular Rhythm
  - Bradycardia



# **Causes of Acute Cardiogenic Shock**

- Conduction System
- Ventricles
- Pericardium
- Valves

67





# **Maximizing your POCUS**

- Estimated EF (given)
- RV
- Wall motion
- Color Flow / Valves

69



# **Causes of Acute Cardiogenic Shock**

- Ventricles
  - RV
    - Acute PE (Obstructive)
    - RV Acute Myocardial Infarction
    - Pulmonary HTN Exacerbation







# **Causes of Acute Cardiogenic Shock**

- Ventricles
  - LV
    - Acute Myocardial Infarction
    - Myocarditis

73



# **Causes of Acute Cardiogenic Shock**

- Ventricles
  - LV
    - Stress Cardiomyopathy
    - Peripartum Cardiomyopathy
    - Septal or Free Wall Rupture







# Causes of Acute Cardiogenic Shock

- Pericardial
  - Tamponade (Obstructive)

77





# Causes of Acute Cardiogenic Shock

- Valvular
  - Aortic Regurgitation
  - Endocarditis
  - Cord Rupture
  - Dissection

79







ERRORS AND ASSUMPTIONS OF RECOGNITION

# Lesson: Use POCUS to help evaluate the etiology!

83

# Agenda Errors and Assumptions of Recognition

- 1 Assumptions re: Vitals and Physical Exam
- 2 Misinterpreting Labs
- 3 Fatal assumptions re: Etiology







Initial Evaluation ACC CS Guidelines

2025 Writing Committee "SUSPECT CS" mnemonic

Table 1
SUSPECT CS: A Mnemonic to Aid in Confirming a Diagnosis of CS

Symptoms/Signs

Congestion, poor perfusion
narrow pulse pressure and tachycardia

Oliguria or anuria, <30 mL/h (<0.5 mL/kg·h])



















Agenda

Management

A: Airway

E: Etiology treatment

3

4

5

# Agenda Management 1 A: Airway 2 E: Etiology treatment 3 I: Inotropy (and vasoactives) 4 5

Agenda <u>Management</u>

2 E: Etiology treatment

A: Airway

3 I: Inotropy (and vasoactives)

4 O: Offloading the heart

5

# Agenda Management 1 A: Airway 2 E: Etiology treatment 3 I: Inotropy (and vasoactives) 4 O: Offloading the heart 5 U: Upgrade Support

101







# Agenda Management 1 A: Admit 2 E: Exit the ED 3 I: ICU Page Sent 4 5

105

# Agenda Management 1 A: Admit 2 E: Exit the ED 3 I: ICU Page Sent 4 O: Off my hands, signing out! 5

# Agenda <u>Management</u>

1 A: Admit

2 E: Exit the ED

3 I: ICU Page Sent

4 O: Off my hands, signing out!

U: Unavailable for questions

107



# Oxygenation and Ventilation

50-88% of CS patients require
 respiratory support (Alviar et al 2020)



109

#### **Airway**

# Oxygenation and Ventilation

- 50-88% of CS patients require
   respiratory support (Alviar et al 2020)
- Positive Pressure Ventilation (PPV)
   reduces preload and afterload



### Oxygenation and Ventilation

- 50-88% of CS patients require
   respiratory support (Alviar et al 2020)
- Positive Pressure Ventilation (PPV)
   reduces preload and afterload
- Median duration of mechanical ventilation 3-3.3 days



111

#### **Airway**

#### Oxygenation and Ventilation

- Consider MV in patients with:
  - Refractory hypoxia or hypercarbia



#### Oxygenation and Ventilation

- Consider MV in patients with:
  - Refractory hypoxia or hypercarbia
  - Increased work of breathing on NIMV



113

#### **Airway**

#### Oxygenation and Ventilation

- Consider MV in patients with:
  - Refractory hypoxia or hypercarbia
  - Increased work of breathing on NIMV
  - Patients who require mechanical cardiac support



### Oxygenation and Ventilation

- Intubation is still high risk
  - Optimize pH, fluid status, BP
  - Sedation: no best recommendation



115

#### **Airway**

# Oxygenation and Ventilation

- Intubation is still high risk
  - Optimize pH, fluid status, BP
  - Sedation: no best recommendation
  - No best mode of ventilation
    - Initial AC TV 6-8 mL/kg PEEP 5-10



# **Oxygenation and Ventilation**

 Cardiogenic shock with RV failure is much trickier.....



117

#### Airway

# Oxygenation and Ventilation

 Cardiogenic shock with RV failure is much trickier.....

Avoid intubation.



# Oxygenation and Ventilation

 Cardiogenic shock with RV failure is much trickier.....



- Avoid intubation.
  - > 35% Mortality
  - Consider High Flow Nasal Cannula
  - Consider early VA-ECMO

119

#### **Airway**

# **Oxygenation and Ventilation**

 PPV / PEEP decreases RV preload, increases RV afterload



### **Oxygenation and Ventilation**

- PPV / PEEP decreases RV preload, increases RV afterload
- Intubating RV failure (tamponade, PE)
  - MAP > 60 with pressors hanging
  - Avoid hypercapnia
  - Titrate up RR to normal pCO2
  - Initial PEEP 3-5



ERRORS AND ASSUMPTIONS OF MANAGEMENT

Lesson: Determine whether there is RV failure before intubating CS

# Agenda

# **Management**

- A: Airway
- **✓** E: Etiology treatment
- **✓** I: Inotropy (and vasoactives)
- O: Offloading the heart
- **♥** U: Upgrade Support

123



### Treat underlying etiology

Acute Myocardial Infarction

Heart Failure



125

#### **Etiology**

#### Treat underlying etiology

- Acute Myocardial Infarction
  - STEMI / NSTEMI
    - acute bradyarrhythmias
    - acute tachyarrhythmias
    - postcardiac arrest
    - complications of MI
  - Cath Lab vs. Cardiac Surgery



#### Treat underlying etiology

- Heart Failure
  - Also Includes:
    - acute myocarditis
    - takotsubo | peripartum | tachycardia-related |
       hypertrophic cardiomyopathy
    - infiltrative diseases
  - Addressing congestion (diuresis)
  - Needs advanced heart failure therapies



127

#### **Etiology**

#### Treat underlying etiology

- PE thrombolysis, thrombectomy
- Structural / Valvular CS cardiac surg
- Tamponade pericardiocentesis



# Treat underlying etiology

Arrhythmia poses special challenges



129

#### Etiology

# Treat underlying etiology

- Arrhythmia is bad for the RV
- Mg > 2.2, K> 4
- Many antiarrhythmics are negative chronotropes



# Treat underlying etiology

- Arrhythmia is bad for the RV
- Mg > 2.2, K> 4
- Many antiarrhythmics are negative chronotropes
- Avoid IV beta blockers
- Avoid IV calcium channel blockers



131

#### Etiology

#### Treat underlying etiology

- If arrhythmia is causing instability: Shock!
- Make extra sure it is not sinus tachycardia!



# Treat underlying etiology

- Atrial fibrillation with RVR
  - Make sure it is not compensatory!
  - Amiodarone
  - Digoxin



133

#### Etiology

# Treat underlying etiology

 Decrease vasoactives and consider mechanical cardiac support



ERRORS AND ASSUMPTIONS OF MANAGEMENT

# Lesson: Avoid IV BB and CCBs. Shock if there is an unstable arrhythmia

135

# Agenda

#### **Management**

- A: Airway
- E: Etiology treatment
- ✓ I: Inotropy (and vasoactives)
- O: Offloading the heart
- U: Upgrade Support





**Inotropes and vasoactives** 

#### **Pressors**

- Have pressors ready before inotropes
- No trials for MAP goals in CS



139

**Inotropes and vasoactives** 

#### **Pressors**

- Have pressors ready before inotropes
- No trials for MAP goals in CS
- Systolic BP > 90, MAP 60-65





# **Vasoactive Medication Summary**

(Shahriar Lahouti, 2021)

| rug               | Target | SVR        | PVR      | PVR/SVR  | HR<br>Contractility | Dose                                  |
|-------------------|--------|------------|----------|----------|---------------------|---------------------------------------|
| Inopressors       |        |            |          |          |                     |                                       |
| Norepinephrine    | αααβ   | <b>† †</b> | 1        | <b></b>  | <b>A</b>            | 0.2–1.0 mcg/kg/min                    |
| Epinephrine*      | αβββ   | <b>† †</b> | <b>\</b> | <b>+</b> | <b>† †</b>          | LD: 5-8mcg/kg/min<br>HD: >8mcg/kg/min |
| Pure Vasopressors |        |            |          |          |                     |                                       |
| Vasopressin       | V1, V2 | **         | <b>\</b> | ₩ ₩      | <b>\</b>            | 0.01- 0.06 U/min (37)                 |

**Inotropes and vasoactives** 

#### **Pressors**

 Uhlig 2020 Cochrane analysis: No convincing data supporting any specific inotropic or vasodilating therapy to reduce mortality in hemodynamically unstable patients with CS"



143

**Inotropes and vasoactives** 

#### **Pressors**

 Uhlig 2020 Cochrane analysis: No convincing data supporting any specific inotropic or vasodilating therapy to reduce mortality in hemodynamically unstable patients with CS"

> "Although there is no clear consensus regarding the choice of first-line vasoactive agent, the writing committee agrees that norepinephrine is a reasonable first choice for most patients with CS who are hypotensive."



#### Caveat

 Increasing doses of norepinephrine to "fix the MAP" without inotropic support can be detrimental



145

#### **Inotropes and vasoactives**

#### Caveat

- Increasing doses of norepinephrine to "fix the MAP" without inotropic support can be detrimental
  - Increased tachycardia
  - Increased afterload



### **Inotropes - Which one?**

- Dobutamine
  - Time of Onset: 1 to 2 minutes
  - Half life 2 minutes



147

**Inotropes and vasoactives** 

#### **Inotropes - Which one?**

- Dobutamine
  - Time of Onset: 1 to 2 minutes
  - Half life 2 minutes
  - May be less effective with beta blockers on board
  - Initiate at 2.5 mcg/kg/min to max 5



### **Inotropes - Which one?**

- Milrinone
  - Time of Onset: 5 to 15 minutes
  - Half life 2 to 4 hours



149

**Inotropes and vasoactives** 

### **Inotropes - Which one?**

- Milrinone
  - Time of Onset: 5 to 15 minutes
  - Half life 2 to 4 hours
  - Renal clearance, avoid in AKI
  - Initiate at 0.125 mcg/mg/min



## **Inotropes - Which one?**

- Dobutamine vs. Milrinone
  - DOREMI Trial
    - Single center double blinded RCT
    - n= 192 patients



151

#### **Inotropes and vasoactives**

# **Inotropes - Which one?**

- Dobutamine vs. Milrinone
  - No significant difference:
    - in-hospital death, resuscitated arrest
    - receipt transplant or MCS
    - non-fatal MI, CVA
    - renal replacement therapy





153

ERRORS AND ASSUMPTIONS OF MANAGEMENT

Lesson: Do not be afraid of inotropes

# Agenda

# **Management**

- A: Airway
- **✓** E: Etiology treatment
- ✓ I: Inotropy (and vasoactives)
- O: Offloading the heart
- **♥** U: Upgrade Support

155



Offload the Heart

# **Furosemide dosing**

- 20 mg IV is rarely enough
  - 1 2.5x PO mg dose in IV mg



157

Offload the Heart

### **Furosemide dosing**

- 20 mg IV is rarely enough
  - 1 2.5x PO mg dose in IV mg
  - If not effective, trial 30 minutes after inotropic support



#### Offload the Heart

### **Furosemide dosing**

- 20 mg IV is rarely enough
  - 1 2.5x PO mg dose in IV mg
  - If not effective, trial 30 minutes after inotropic support
  - Check and replete Mg and K to avoid arrhythmia



159

#### Offload the Heart

# Renal replacement therapy

- Early nephrology involvement
- Refractory metabolic acidosis (pH < 7.2)</li>



Offload the Heart

## Renal replacement therapy

- Refractory hyperkalemia (>5.5)
- Inability to achieve negative fluid balance despite infusion, augmentation



161

ERRORS AND ASSUMPTIONS OF MANAGEMENT

Lesson: Aggressive diuresis with volume overloaded patients

# Agenda

## **Management**

- A: Airway
- E: Etiology treatment
- ✓ I: Inotropy (and vasoactives)
- O: Offloading the heart
- **♥** U: Upgrade Support

163

ERRORS AND ASSUMPTIONS OF MANAGEMENT

Fatal Error: Not calling for transfer early / knowing to activate the cath lab



#### **Upgrade Support**

# **Mechanical Cardiac Support**

- Indication
  - CS from AMI
  - CS refractory to inotropes
  - CS due to acute myocarditis



165

#### **Upgrade Support**

### **Mechanical Cardiac Support**

- Indication
  - CS in cardiac transplant rejection
  - CS with biventricular failure
  - Arrhythmogenic storm







# Agenda

## **Management**

- A: Airway
- E: Etiology treatment
- ✓ I: Inotropy (and vasoactives)
- O: Offloading the heart
- **♥** U: Upgrade Support

169

ERRORS AND ASSUMPTIONS OF MANAGEMENT

Lesson: Ask for help early!



171

# **Conclusion - Salient Points**

 Have a high suspicion for CS despite physical exam and labs

lacktriangle



#### **Conclusion - Salient Points**

- Have a high suspicion for CS despite physical exam and labs
- Utilize POCUS to assist with determining etiology

lacktriangle



173

#### **Conclusion - Salient Points**

- Have a high suspicion for CS despite physical exam and labs
- Utilize POCUS to assist with determining etiology
- Respect RV failure

•



#### **Conclusion - Salient Points**

- Have a high suspicion for CS despite physical exam and labs
- Utilize POCUS to assist with determining etiology
- Respect RV failure
- Avoid IV beta blockers and calcium channel blockers

lacksquare



175

### **Conclusion - Salient Points**

- Have a high suspicion for CS despite physical exam and labs
- Utilize POCUS to assist with determining etiology
- Respect RV failure
- Avoid IV beta blockers and calcium channel blockers
- Do not be afraid of inotropes, furosemide and calling for help



# **Conclusion - Thank you!**

# **Questions?**

rohit.menon@som.umaryland.edu

