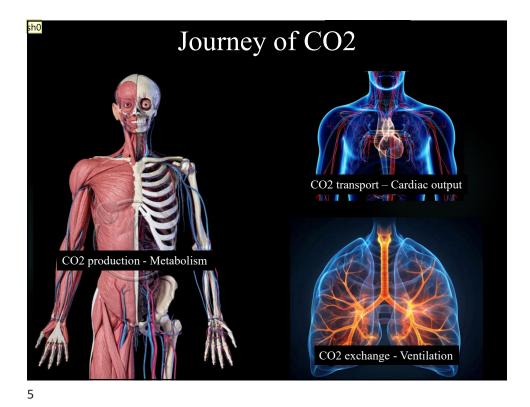
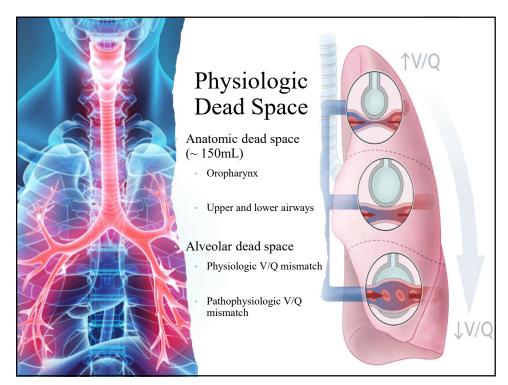

12th UMEM Critical Care Symposium Wednesday, May 21, 2025 Presentation by Dr. Nicholas Santavicca

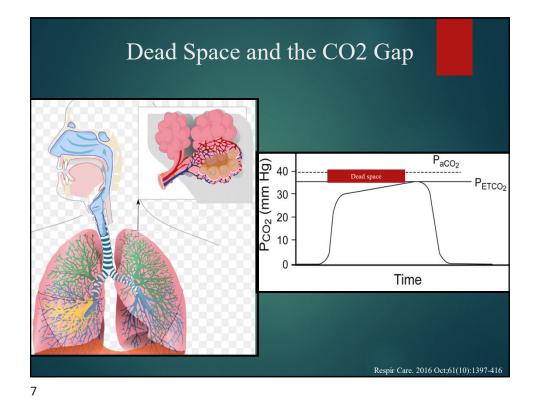


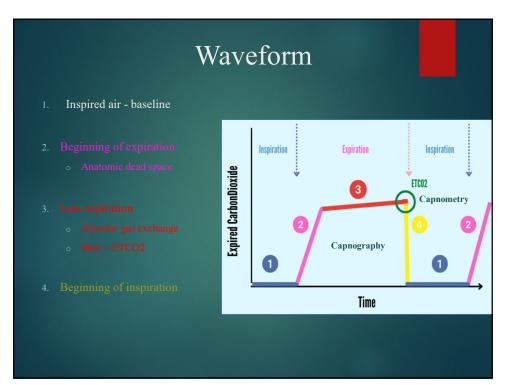

NO FINANCIAL DISCLOSURES!

Learning Points

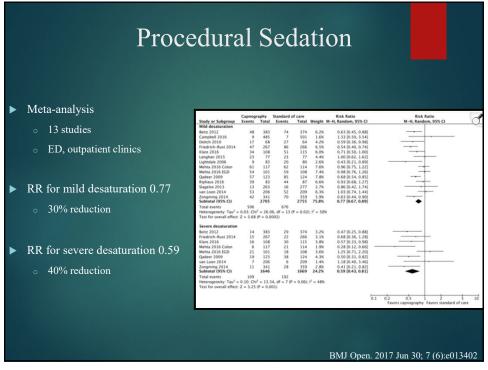
- Capnography is determined by:
 - ➤ Metabolism
 - Cardiac output
 - Lung function
- Capnography in procedural sedation:
 - Decreases hypoxia
 - Decreases assisted ventilation
- Capnography for intubation:
 - ▹ Very specific
 - > Waveform and value
 - > Don't forget to use it!!

Learning Points
 Capnography in cardiac arrest: Low ETCO2 (< 10 mmHg) is ominous during cardiac arrest Consider optimizing compressions (goal >20 mmHg) Sudden, sustained increase in ETCO2 could represent ROSC
 Capnography for sepsis: Noninvasive lactate Low ETCO2 correlates with: Sepsis/severe sepsis diagnosis Acidosis Higher lactate Higher mortality >5% increase during passive leg raise can predict fluid responsiveness

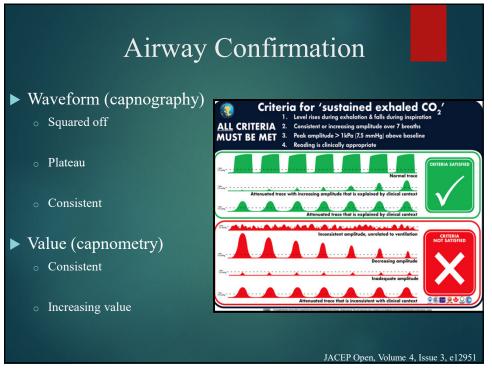


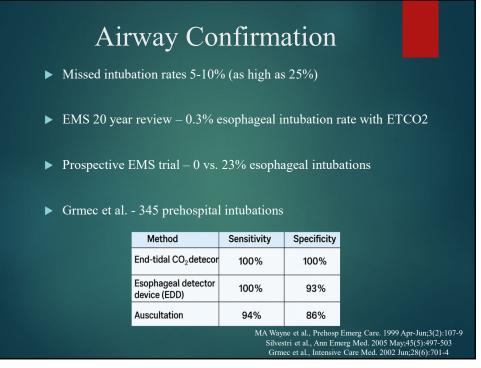


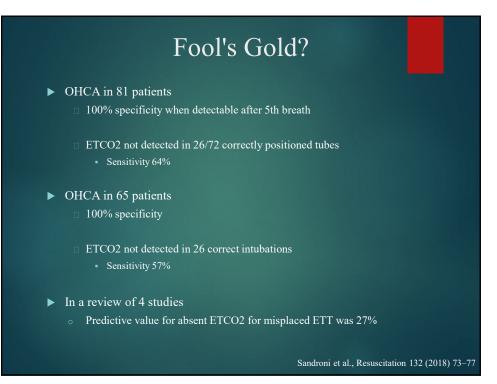
Slide 5

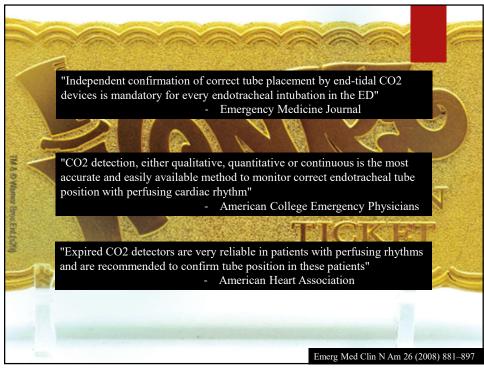

sh0 separate slide with text on what increases and decreases CO2 metabolism so there is a visual

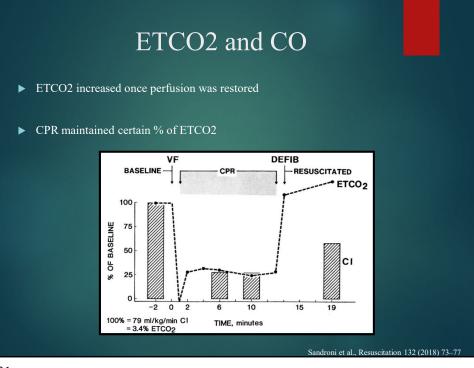
shilpa.r.kolli@gmail.com, 2025-05-15T09:30:51.194

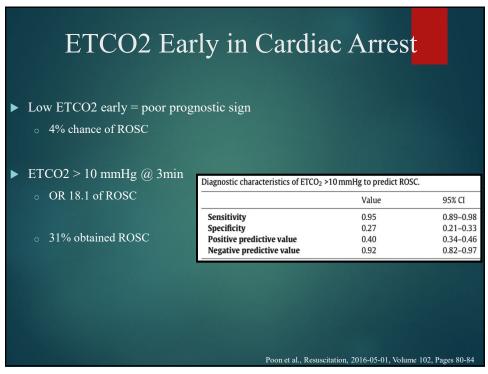


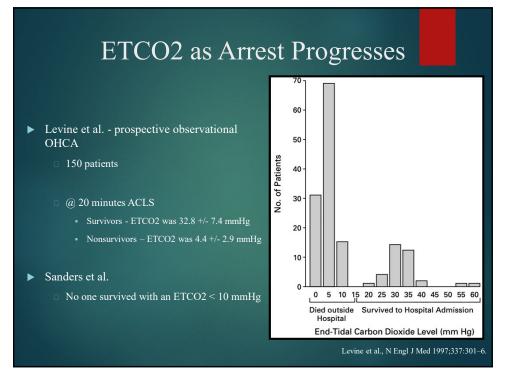


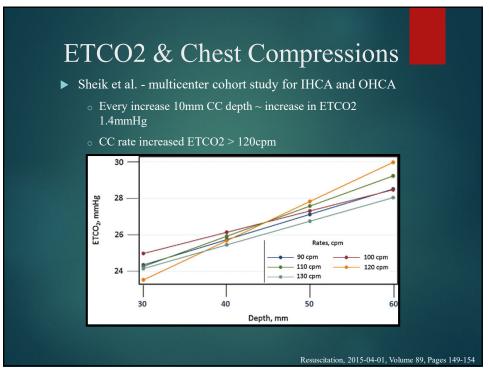

	Capnog	anhu	Standard o	6 cara		Peto Odds Ratio		Peto Odds Ratio
Study or Subgroup	Events	Total	Events		Weight	Peto, Fixed, 95% Cl		Peto, Fixed, 95% CI
Assisted ventilation							1.5.	
Beitz 2012	0	383	1	374	0.9%	0.13 [0.00, 6.66]	•	
Campbell 2016	0	485	2	501	1.8%	0.14 [0.01, 2.23]	•	
Friedrich-Rust 2014	7	267	12	266	16.7%	0.58 [0.23, 1.44]		
(lare 2016	0	108	1	115	0.9%	0.14 [0.00, 7.26]	•	•
Slagelse 2013	2	263	3	277	4.5%	0.70 [0.12, 4.09]		
Zongming 2014	1	341	3	359	3.6%		-	
Subtotal (95% CI)		1847		1892	28.4%	0.47 [0.23, 0.95]		-
Heterogeneity: Chi ² = Test for overall effect:				%				

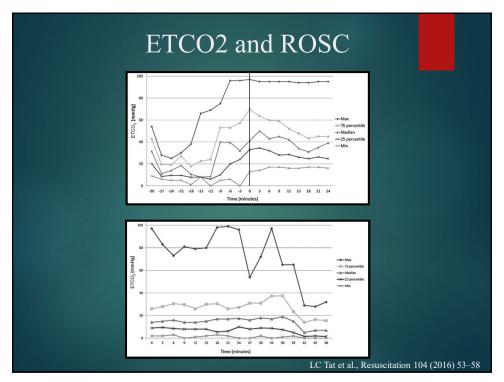




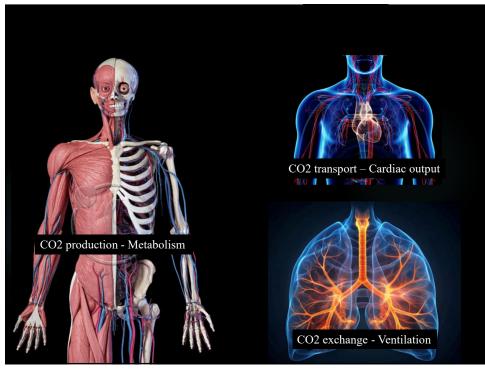




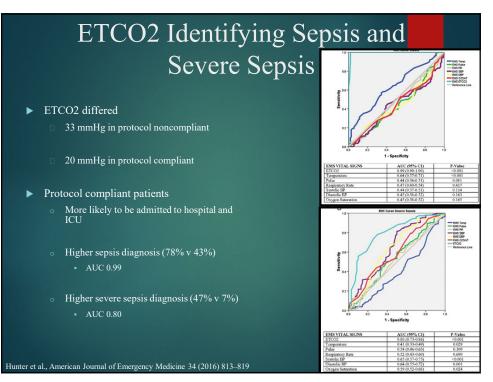


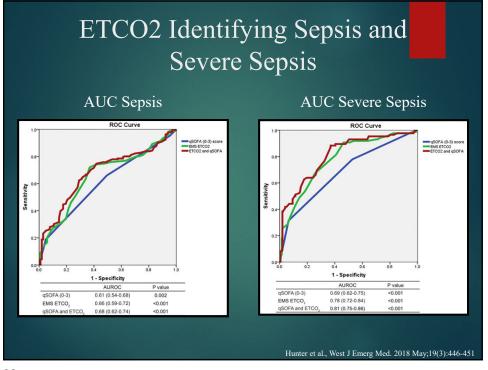


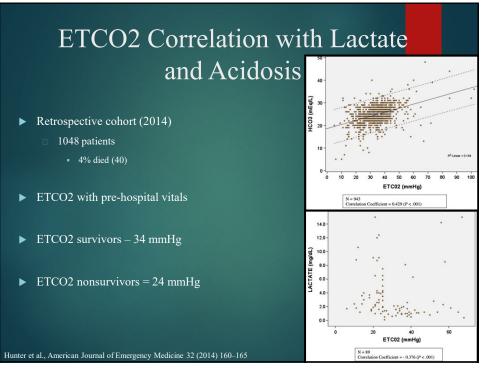


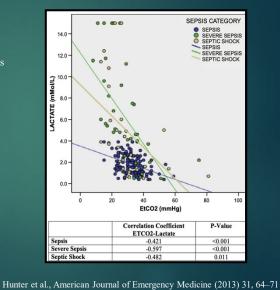

ETCO2 and ROSC									
 Sudden changes in CO change ETCO2 									
 Tissue perfusion> CO2 production 									
	 Cardiac output transports CO2 to lungs for exchange Diagnostic characteristics of ETCO₂ change indicating ROSC. 								
	$ETCO_2 \ rise \geq \! 10 \ mmHg$	$ETCO_2 \ rise \geq \! 20 \ mmHg$	$\begin{array}{l} \text{ETCO}_2 \text{ rise } \geq \! 10 \text{ mmHg and} \\ \text{ETCO}_2 \text{ value } \geq \! 40 \text{ mmHg} \end{array}$	$ETCO_2$ rise ≥ 20 mmHg and $ETCO_2$ value ≥ 40 mmHg					
Sensitivity, 95% CI Specificity, 95% CI Positive predictive value, 95% CI Negative predictive value, 95% CI Positive likelihood ratio, 95% CI Negative likelihood ratio, 95% CI	33%(22-47%) 97%(91-99%) 83%(62-95%) 74%(66-81%) 9.8 (3.5-27.5) 0.7 (0.6-0.8)	20%(11-33%) 98%(93-100%) 86%(56-97%) 71%(63-77%) 11.8 (2.7-51) 0.8 (0.7-0.9)	18% (10-31%) 98% (93-100%) 85% (54-97%) 70% (63-77%) 10.8 (2.5-47.2) 0.8 (0.7-0.9)	15%(8-27%) 99%(95-100%) 90%(54-99%) 70%(62-76%) 17.7 (2.3-136.5) 0.9 (0.8-1)					

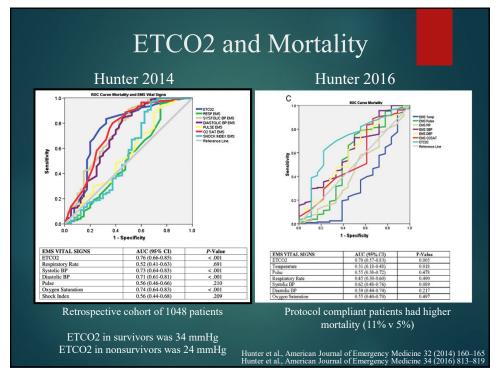
LC Tat et al., Resuscitation 104 (2016) 53-58

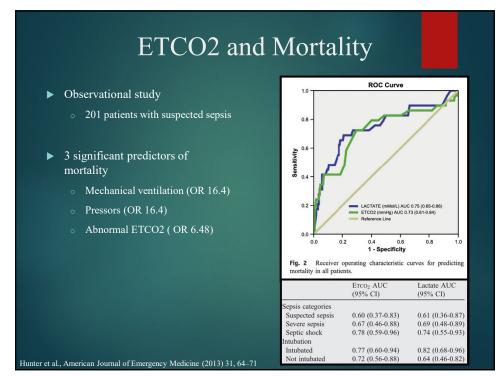


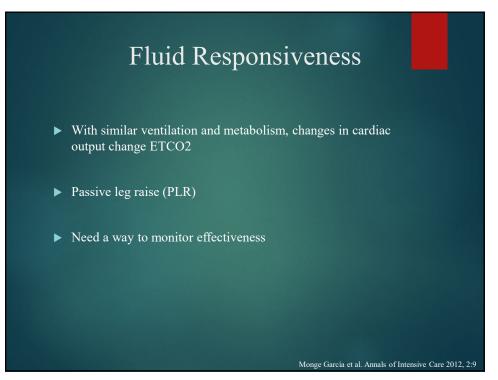


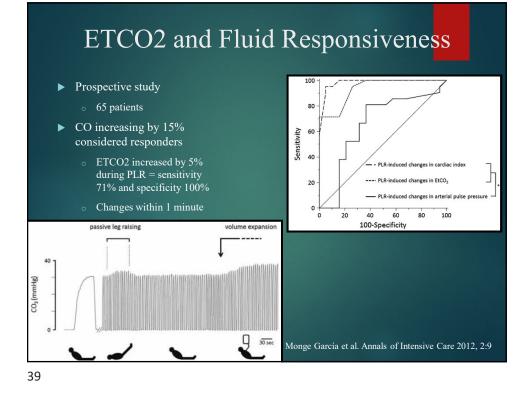


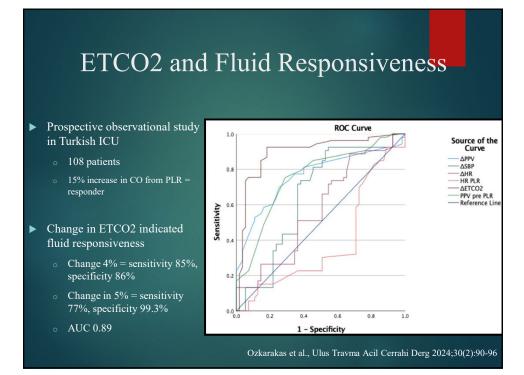

ETCO2 Identifying Sepsis and Severe Sepsis						
► Retrospective cohort study (2018)		Sepsis	Severe sepsis	Total		
	1 (- 000)	N=203	N=86	N=289	P value	
 289 patients 	Age (n=289) Gender (female) (n=289)	69 (SD18) 108 (53%)	74 (SD15) 41 (48%)	70 (SD17) 149 (52%)	0.034	
	Admitted (n=287)	108 (53%)	41 (48%) 85 (100%)	278 (97%)	0.440	
	Admitted (n=287) Admitted to ICU (n=285)	49 (25%)	50 (59%)	278 (97%) 99 (35%)	<0.002	
Prehospital assessment "sepsis	Hospital mortality (n=288)	9 (5%)	16 (19%)	25 (9%)	<0.001	
alert"	Admitting diagnosis (n=287)	0 (070)	10(10/0)	20 (070)		
alort	Abdominal/GI	14 (7%)	2 (2%)	16 (6%)		
Suspected infection	Altered mental status	19 (10%)	6 (7%)	25 (9%)		
	Cardiac/vascular	3 (2%)	1 (1%)	4 (1%)		
	Respiratory	35 (17%)	8 (9%)	43 (15%)	0.009	
□ OSOFA >2	Infection	85 (42%)	60 (70%)	145 (52%)		
QSOIA-2	Neurologic	3 (2%)	0 (0)	3 (1%)		
	Metabolic/endocrine	9 (5%)	2 (2%)	11 (4%)		
	Renal/urinary	26 (13%)	4 (5%)	30 (11%)		
□ ETCO2 < 25mmHg	Other	7 (4%)	3 (4%)	10 (4%)		
	At least 2 SIRS criteria	187 (93%)	84 (98%)	271 (94%)	0.108	
	qSOFA score					
Severe sepsis:	0	12 (6%)	2 (2%)	14 (5%)		
	1	84 (41%)	17 (20%)	101 (35%)	< 0.001	
 Higher ICU admission 	2	94 (46%)	40 (47%)	134 (46%)		
TT 1 . E	3	13 (6%)	27 (31%)	40 (14%)		
 Higher mortality 	ETCO ₂ [95% CI]	28 [27-29]	19 [18-22]]	25 [24-16]	< 0.001	
• Higher lactate	Lactate (n=228) HCO, (n=259)	1.9 [1.8-2.1] 24 [23-24]	5.4 [4.8-6.2] 20 [19-22]	3.2 [2.8-3.5] 23 [22-23]	<0.001	
1 11000	1003 (11-209)	24 [23-24]	20 [19-22]	23 [22-23]	~0.001	
 Lower HCO2 						
• LOWER ETCO2 !!!						
		TT 1		2010.34		
		Hunter et al., We	st J Emerg Med.	2018 May;19(3):446-45	

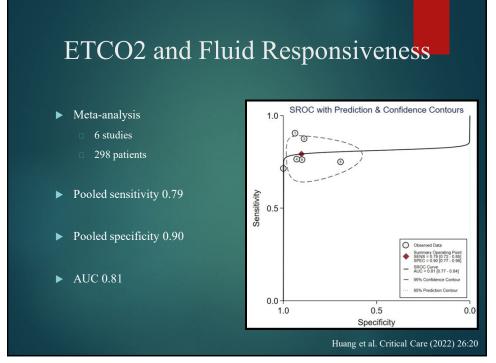


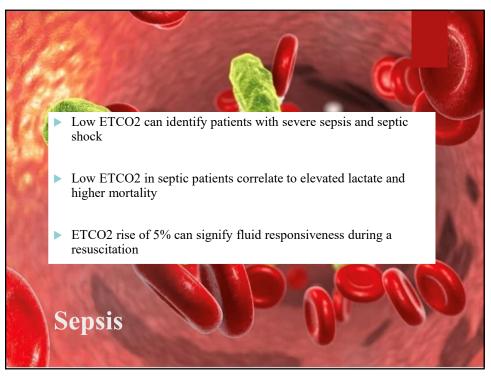





- Observational study (2013)
 - 201 patients with suspected sepsis
- ETCO2 measured with lactate early in resuscitation
- Nonsurviving patients had higher lactates and lower ETCO2 levels







Learning Points

- Capnography is determined by:
 - ➤ Metabolism
 - Cardiac output
 - Lung function
- Capnography in procedural sedation:
 - Decreases hypoxia
 - Decreases assisted ventilation
- Capnography for intubation:
 - ▹ Very specific
 - > Waveform and value
 - > Don't forget to use it!!

Learning Points	
 Capnography in cardiac arrest: Low ETCO2 (< 10 mmHg) is ominous during cardiac arrest Consider optimizing compressions (goal >20 mmHg) Sudden, sustained increase in ETCO2 could represent ROSC 	
 Capnography for sepsis: Noninvasive lactate Low ETCO2 correlates with: Sepsis/severe sepsis diagnosis Acidosis Higher lactate Higher mortality >5% increase during passive leg raise can predict fluid response 	siveness

